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Abstract. Based on the continuum dielectric model, this
work has established the relationship between the
solvent reorganization energy of electron transfer (ET)
and the equilibrium solvation free energy. The dipole-
reaction field interaction model has been proposed to
describe the electrostatic solute-solvent interaction. The
self-consistent reaction field (SCRF) approach has been
applied to the calculation of the solvent reorganization
energy in self-exchange reactions. A series of redox
couples, 0,/0O5, NO/NO ", 0;/05, N3/N3, NO,/NOJ,
CO,/CO;, S0,/SO;, and CIO,/CIO;, as well as
(CH»),C-(-CH»-),-C(CH»)> (n =1 ~ 3) model systems
have been investigated using ab initio calculation. For
these ET systems, solvent reorganization energies have
been estimated. Comparisons between our single-sphere
approximation and the Marcus two-sphere model have
also been made. For the inner reorganization energies of
inorganic redox couples, errors are found not larger than
15% when comparing our SCRF results with those
obtained from the experimental estimation. While for
the (CH,),C—(-CHy),—C(CH,), (n =1 ~ 3) systems,
the results reveal that the solvent reorganization energy
strongly depends on the bridge length due to the
variation of the dipole moment of the ionic solute, and
that solvent reorganization energies for different systems
lead to slightly different two-sphere radii.
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Introduction

Electron transfer (ET) reactions in solutions are of
fundamental significance in chemical and biochemical
processes. In order to understand the dynamical mech-
anisms of those reactions, a number of theoretical and
experimental studies have been carried out. The reorga-
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nization energy, which is an important dynamical
parameter, commonly denoted /, can be divided into
two parts, the inner reorganization energy 4;, and the
solvent reorganization energy 4, [1], i.e.,

A= Ji+ o (1)

For the evaluation of the inner reorganization energy,
direct quantum chemistry calculations have given rather
good results in recent years. The estimation of the
solvent reorganization energy, however, stays somewhat
unsatisfactory. After Marcus put forward his two-sphere
model a few decades ago [2, 3], the calculations of
the solvent reorganization energy have been intensely
researched. Due to Marcus, the solvent reorganization
energy can be expressed as the free energy difference of
the non-equilibrium state and the equilibrium state [3],
ie.,

Jo = Gyeq — Geq 2)

where G,_oq and G4 stand for the non-equilibrium free
energy and the equilibrium free energy respectively.

Computational methods for evaluating the equilibri-
um solvation free energy have been supplemented to
some popular quantum chemistry packages [4—12], while
the calculation of the non-equilibrium solvation free
energy is less convenient. The main aim of our present
work is to establish a mathematical relationship between
the solvent reorganization energy of ET reaction and the
equilibrium solvation free energy and then to perform
the direct calculations of the solvent reorganization en-
ergy. Using the Onsager reaction field model [4] and the
standard self-consistent reaction field (SCRF) approach
appended to the HONDO 95.6 package [13], the esti-
mation of the solvent reorganization energy has been
carried out. We call this method the dipole-reaction field
interaction model. Test calculations have been made to
some typical redox couples including O,/O5, NO/NO ™,
03/03, N3/N3, NO,/NOj, CO,/CO;, SO,/SO;, ClO,/
CIO;, and to the model systems (CH,),C—(CH;),—
C(CHy), (n=1 ~3).

This paper is organized as follows. First we introduce
the expressions of the equilibrium solvation free energy
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under the SCRF approach. Then we detail the expres-
sions of the non-equilibrium solvation free energy and
the solvent reorganization energy. After this we couch
the application of the approach to some samples of
chemical interest, and compare the SCRF approach and
the Marcus two-sphere model. Finally our conclusions
are given.

Equilibrium solvation free energy

In the continuum dielectric model, for a system embed-
ded in the solvent cavity, the free energy functional is
expressed as [14]

G = (WIHol) + 1/(22.) / P.(r)2 dr

1/ [ PP dr1/2 [ [Pt

+ Por(1)] - T(r, 1) - [Pe(r) 4 Por ()] d’r &°F
= [ [Pele) + Pat)] By 1, )0 (3)

where Hj is the vacuum Hamiltonian of the isolated
solute; Ey(r, p) is the electric field due to the solute
charge distribution p of electronic state { in vacuum;
P. and P, are electronic and orientational polarizations
of the medium respectively; y. and y,, are the static
susceptibility for P, and P,, and related to the solvent
static and optical dielectric constants &, and &, by

Ze = (600 — 1)/4m (4)

Xor = (80_800>/4Tc (5)
The integrals in Eq. (3) are over the volume outside the
cavity, and T(r, r’) is the dipole tensor

1

!
A\AY v

T(r,v') =

(6)

In fact, the free energy G in Eq. (3) contains, in
sequence, contributions from the expectation value of
Hy in vacuum, the self-energy for the two types of
solvent polarization, the interaction between the total
polarization P (P(r) = P.(r) + Py{(r)) and the field
arising from the solvent polarization, as well as the
interaction between the solvent polarization and the
electronic field formed by the charge distribution of
the transferring electron. According to [15],

Ey(r,0¢,00:) = —/VT(r,r’) Pe(r) + Por ()Y (7)

and the free energy functional reads

= (Y|Ho|y)+
1/(2) / ()2 + 1/(2200) / () &r

—1/2 /V [Pe(r) + Por(r)] - Ey (r, 0c, 0or) - d°r
- /V [Pe(r) + Por(r)] - Ey (r, p)d’r (8)

Throughout this paper, we denote the charge distri-
bution p from  within the cavity p" before ET and p°
after ET. Here we use “r” and “p” to refer respectively
to the reactant state and the product state of ET. During
the ET process, the high-frequency response of the
electronic polarization will keep in equilibrium with the
electron transferring, whereas the orientational polar-
ization will keep in equilibrium with the field arising
from p, g, and o, of “r” state, say, p', o., and o} .
Thus the orientational polarlzation and the electronic
polarization are given by

P, () XorEl//(p’ e or) (9)

Pe(l‘> = XeEl// (pp, Oc, Ggr) (10)

because the electric field caused by the polarizations can
be divided into two parts, the contribution from the
solute charge distribution and that from the surface
polarization densities, i.e.,

El//(pv Oe» or) El//( Oc» or) +El//(r P) (11)
Ey(p?, 0¢,05,) = Ey (e, 05,) + Ey (r, pP) (12)

Using Egs. (11) and (12) inversely, we get the final form
of G, which is given in Eq. (31) of [15]:

G = (Ho) — 12 / (PetPyy) - Ey(r, p0) - &'r

+ 1/2/ : [E(ﬁ(p ) 67 or) El//(pp7oe70{)l‘)] : d3r
vV
(13)

When the system is in equilibrium state (p" — pP), we
have
Ey(r,p") = Ey(r, p?) (14)

El//(pv Oe» or) El//(p O¢, 0 or) (15)

Thus the last integral in Eq. (13) vanishes, and the
equilibrium free energy expression is obtained:

Geq = (W|Ho|y) — 1/2/1/ (P. +Pg) -Ew(l‘, p)- d’r
(16)

On the other hand, the total energy of the system can be
expressed as the energy of the solute in vacuum plus
the equilibrium electrostatic solvation free energy AG.
ie., [16, 17]

eq - <W|H0|W> + AGsol (17)

so we get the expression of the equilibrium electrostatic
solvation free energy as

AG = —1/2 / (Pe + Por) - By (r, p") - d'r (18)
vV

Clearly, in the equilibrium state, P, and P, are in the
same direction. Using Egs. (4) and (5), we can express
AGY) as

(e0 — 1)

eqd _
AG 2(e0 — €0)

9 = / Po () Eyr.p") - & (19)



SCRF approach for the calculation
of the equilibrium electrostatic solvation free energy

At present, AGL, is usually calculated by SCF tech-
niques. Now let us give a brief description for the SCF
evaluation of AGS, as follows.

If the dielectric medium is homogeneous, we can
rewrite the equilibrium free energy as [15, 18, 19]

Gea = (WIHOl) =172 [ () - By
— (Y[Holy) — 1)2 / o(r) - Ur)dr
— (YH )~ 1)2 / p(r) - U(r)dPr (20)

where U(r) is the electrostatic potential and p(r) is the
charge distribution in the cavity, with the condition that

p(r)=p(r) reWh (21)
p(l') =0 re Vout (22>

where Vi, and V, are respectively the volumes inside
the cavity and outside the cavity. Combining Eqs. (17),
(19)—(22), we have

(60 — 1)
2(e) — €00)

= _1/2/’/ p'(r) - U(r) &r (23)

According to Onsager reaction field theory, the solute is
embedded in a spherical cavity with radius ay, surround-
ed by the continuous medium of dielectric constant &,.
The dipole of the solute molecule will induce the solvent
molecules to form a reaction field R, and then the
induced reaction field will in turn interact with the solute
molecule dipole. In molecular orbital theory, when only
a point dipole u at the center of the sphere is considered
[16], the equilibrium electrostatic solvation free energy is
defined as the electrostatic interaction energy between
the dipole of the solute and the reaction field arising
from the solvent polarization. At present, the self-
consistent reaction field method based on the Onsager
model supplies an efficient approach to evaluating AGj,.

In molecular orbital theory, the electrostatic solvent
effect may be taken as a perturbation term, H;, added to
the Hamiltonian of the isolated molecule, Hy. Thus the
total Hamiltonian can be written as

H,; = Hy + H, (24)

The perturbation term H,; expresses the coupling
between the solute dipole moment u and the reaction
field R, that is

AGH, = —

sol T

/VPor(r) Ey(r, p") d°r

H, =—u-R (25)
while the reaction field R can be expressed as
R=gu (26)

where the constant g, which gives the strength of the
reaction field, depends on both the dielectric constant of
the solvent &, and the radius of the spherical cavity aq.
According to Onsager [4],
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g =2(e0 — 1)/[(260 + 1)a5)] (27)

The energy of a solute molecule is calculated by solving
the one-electron Fock equation. For a self-consistent
field wave function, the effect of the reaction field can be
incorporated as an additional term in the Fock matrix
[10, 20], the resulting Fock equation is

(Fo — - R)¢; = eidh; (28)

where ¢; is the molecular orbital and ¢; is the eigenvalue
of ¢;. Solving these equations self-consistently, one can
get the expression of the energy of a solute, G, by

Gs = ([Holy) = (W[Holy) — p- R (29)

When the solvent polarization energy is included, the
free energy of the system is given by [20]

Gey = Gy + 1= R/2 = (J[Hol) — - R/2 (30)
For the sake of comparison with Eq. (17), we get
AGS, = i R/2 a1)

Obviously, AGZ,, which stands for the equilibrium
electrostatic solvation free energy of the system, is pro-
portional to the product of the dipole moment of the
solute and the reaction field formed from the medium
polarization. Combining Egs. (31) and (23), we can

conveniently get the following equation:

(60 —1) o
M/VPOY(‘) “Ey(r,p") dr

= —1/2/’/ p'(r)- Ulr) &r = —1/2pn-R

AGY = —

sol
(32)

Equation (32) gives the relationship among the interac-
tion energies between the total polarization and the
electric field, the charge distribution, and the electrostatic
potential, as well as the solute dipole and the reaction
field. So, in the following section, we will use this rela-
tionship to derive the expressions of the non-equilibrium
free energy and the solvent reorganization energy.

Non-equilibrium solvation free energy
and solvent reorganization energy

Non-equilibrium solvation free energy

Typically, the solvent electronic polarization due to the
bound electron in the polar solvent molecules adjusts
quickly to any changes in, e.g., a reactive solute system
or the solvent. In other words, the motions of the solvent
electrons are faster than those for the solute. Thus we
can invoke a Born-Oppenheimer description for P, and
employ the variational principle to get the following
expression (Eq. 2.6 of [14]):

SGY, Pe, Por] /0P = 0 (33)

which reads

Pe(r) = XcEl//(rv pp) — e VT(]‘,I") : [Pe(r/>

+ Po. ()] &Y (34)
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Due to the cavity, this is an integral equation with
boundaries, and it is very difficult to solve. Under the
assumption of the spherical cavity and the monopole
fields, we can neglect the “dielectric image” effect and
extend the volume integral over V to include the cavity.
Therefore, we can invert Eq. (34) for arbitrary ¥ and P,
to obtain

P = (1D IB ) —dnba]l 9

o0

With this PI(r), the second term in Eq. (13) becomes
[14]

D

—47Po;] + Por } “Ey(r, pP)dr

1 1 2
= — — _—— p 3
o (1 800)/1/]E1/,(r,p )| d’r

1
T e Py, - Elﬁ (l', pp)d3r (36>
Eoo J¥

In the last term of Eq. (13), we have

1/2/ P, - Ey(p", 0%, 0 ) dr
Vv
=1/2 / Por - Por /70, d°r
Vv

=21/ (g0 — €no) /V [Py [*dr (37)

—~ 1/2/ P, - Ey(pP, oe, 0% )dr
Vv
= —1/(2800)/P0r~E,/,(r,pp)d3r

vV

—1/(2e) / &’r / P, - T(r,1') - P (r)d’r
14 Vv

—1/(2ex) / d3r/ P, - T(r,v) - P.(r)d’  (38)
V V

Neglecting the last term in Eq. (38), the non-equilibrium
free energy G, .q is expressed in the following form
(Eq. 2.12 of [15]):

G[lpv qu [lﬁ, Por]; Por]

= i) — - (1= [ B )P

1

= — | PorEy(r, PP)&r + Gor (39)
oo JV

where G, is the self-free energy associated with the
orientational polarization [15]. In our case, G, will keep
invariant in both the equilibrium and non-equilibrium
states:

Gor = 27/ (20 — goo)/ |Po*d’r
Vv

+ 1/(2800)/Vd3r/VP0r~T(r7r’) Po(r)d’r  (40)

Dipole-reaction field interaction model for calculation
of solvent reorganization energy

As far as we are concerned, in a self-exchange reaction,
B +B=B-+B~

the following equations are satisfied:

(W' Holy") = (P [Ho[y?) (41)
Ew(l‘,pr) = —E]/,(l‘, pP) (42)
/V |Ey(r, pr)}2d3r = /V |Ey(r, pp)|2d3r (43)

Equation (41) means that the reactant state " and the
product state y® have the same expectation value of the
vacuum Hamiltonian, and Egs. (42) and (43) indicate
that the electric field just reverses its direction, with the
magnitude invariant. Assuming that the orientational
polarization P,. has the same self-energy before and
after the transition from " to y® of the transferring
electron, according to Eq. (2), we can easily obtain a new
expression of the solvent reorganization energy, which is
the difference between the non-equilibrium free energy
and the equilibrium free energy, as

Jo = Gyeq — Geq = 2/ / P, - Ey(r,p")d’r (44)
V

Combining Egs. (44) and (32), we reach the final
expression of A,:

4(ep — &0)
(80 — 1)éno

2(80 - 800) / r 3
(60— Dew )y p'(r)- U(r)d’r

2(ep — €00)

(80 — e nR (43)
Equation (45) gives the relationship between the equi-
librium electrostatic solvation free energy and the
solvent reorganization energy of the self-exchange ET
reactions. From this relationship, we learn that the
solvent reorganization energy can be obtained from the
equilibrium electrostatic solvation free energy evaluated
through SCRF approach and ab initio calculations,
and that it is applicable to perform the direct calculation
of the solvent reorganization energy by using SCRF
approach. For aqueous solution, ¢,, = 1.8 and ¢, = 78.5
[22], the expression of 4, is simplified to

Jo=1.10p-R (46)

From this expression, we see that the solvent reorgani-
zation energy is proportional to the product of the solute
dipole and the reaction field, so we call our calculating
approach of /, is the dipole-reaction field interaction
model. As a summary, we give a schematic depiction of
our dipole-reaction field model in Fig. 1.

Before the ET process, the dipole p" of the solute
induces a solvent reaction field R". Mutual polarizations
between p" and R" make the solute-solvent system reach
an equilibrium state (Fig. 1a). As long as the transfer-

AG]

sol

Jo = —
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Fig. 1a—c. A schematic description of the dipole-reaction field
interaction in: a the equilibrium state of reactant; b the non-
equilibrium state; ¢ the equilibrium state of product

ring electron “jumps” from the donor (D) to the ac-
ceptor (A), the charge distribution of the solute changes
from p" to pP; thus the solute dipole changes, and so does
the reaction field. If we denote the solute dipole and
the reaction field after ET as p? and R, respectively
(Fig. 1b), then for a self-exchange reaction, when there is
only a simple electron transferring from D to A, it is safe
for us to assume that

W=y (47)

and the difference of the dipole moment before and after
ET reads

Ap=p’ —p' =24 (48)

On the other hand, because the low-frequency orienta-
tional polarization of solvents cannot keep up with
the electronic transition, the system arrives at a non-
equilibrium state, and the reaction field reduces to R.
Although the component of the reaction field contrib-
uted from the high-frequency electronic polarization of
the solute inverses, the component due to the orienta-
tional polarization is dominant, so we can expect that
R has the same direction as R" and only with the
magnitude changed.
Combining Egs. (26), (27), (45), and (48), we have
2(80 — €00) >
Ao (e0 — e S

(80 — &) 2
(260 + 1)excay (AR (49)
Equation (49) indicates that the solvent reorganization
energy is proportional to |Ap|*/ag, which is consistent
with the conclusions obtained by Ooshika [23], Lippert
[24], and Zwan and Hynes [25] in discussing some other
problems, e.g., the time-dependent fluorescence solvent
shift [25].

However, owing to the mutual polarization between
the solute and the polar solvents, the value of p is usually
greatly different from that in vacuum. So it should be
mentioned that the dipole moment p in Eq. (46) is a
quantity after SCRF calculation. Moreover, since ET
system is generally an ionic system, the electrostatic in-
teraction of an ET system can be divided into the dipole-
reaction interaction energy, and a Born charge term
which is the interaction energy between the molecular
ion and the polar solvents. We denote the Born charge
term as Eporm), and express it as [16]
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&) — lgz
280 ap

E(Born) - =

where Q is the total charge of the solute molecular ion.
As shown in Fig. 1, the net charge on the solute
molecule, or the “supermolecule”, will remain constant
when an electron transfers from D to A in the spherical
cavity. Based on the assumption of fixed spherical cavity
radius, the Born charge term remains invariant through-
out the ET process; thus the Born charge term does not
contribute to the solvent reorganization energy. This is
the reason why we only discuss the dipole-reaction field
interaction throughout this work.

In the calculation of A,, a few methods based on ab
initio calculation have been developed recently. Liu and
Newton presented one approach to the calculation of
solvent reorganization energy using the SCRF technique
and Delphi Poisson equation solver [5]. The self-
consistent reaction field technique is employed in both
Newton’s work and ours. Unlike the treatment in
Newton’s work, which solves the Poisson equation, our
method only needs the SCRF calculation associated with
the Onsager model. Under the spherical cavity approx-
imation in our work, the calculation has been greatly
simplified. Thus we can explicitly express the relation-
ship between the solvent reorganization energy and
the equilibrium solvation free energy and evaluate the
solvent reorganization energy through a “‘single point™
calculation of the solvent effects. This treatment makes
our model much easier to use. A disadvantage of our
model is that the application is confined to the sphere-
shaped systems. The model remains to be modified for
the non-sphere systems.

In addition, by replacing a suitable average value of p
for the dipole moment before and after ET, say, p" and
1P respectively, we can extend the application of Eq. (49)
to the cross reaction:

(80 - 800) r
ho = W§(|I‘p|2+|ﬂ |2)

Since the evaluation of 4, only involves the cavity radius
as well as the dipole moment after the SCRF calculation,
it is very easy to perform. However, it should be
mentioned that in the case that the direction of p and
electron transfer does not fall on the same line, the dipole
moment p used in Eq. (49) actually is its component in
the direction of electron transfer.

As noted previously, in the derivation of Eq. (35), we
ignored the boundary condition associated with the
cavity. Actually, we can obtain a slightly different
expression of P9 by taking the proper boundary con-
dition into account. (see Eq. (2.20) in [26]). Following
suitable treatment, we may reach another expression of
Ao which differs from Eq. (49) by a factor close to unity.
Given the approximations of spherical cavity and point-
dipole invoked in our derivation, we think it is reason-
able to neglect the boundary condition in our present
paper. The more precise derivation regarding boundary
conditions will be presented in later work.

In the following section, we will use Eq. (45), or
equivalently Eq. (46), to evaluate A, for the selected
model systems.

(50)
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Test calculation
Inorganic donor-acceptor complex

Geometry optimization of the encounter complex. Using
the unrestricted Hartree-Fock (UHF) wave function, we
optimize the donor D, the acceptor A, and the encounter
complex D...A at the level of HF/6-31G or HF/DZP
(DZP represents the Dunning’s (9s,5p)/(3s,2p) basis
set with the polarization function on all atoms). The
optimized bond parameters for the donors and the
acceptors are listed in Table 1. The optimized structure
of the encounter complex A3...Aj or AB,...AB;,
which gives the largest stabilization energy (Table 2)
among several nuclear configurations, has been shown in
Fig. 2.

Solvent reorganization energy. In this work, in order to
estimate the solvent reorganization energy, we need to
determine the cavity radius at first. We employ Hyper-
chem package (Hyperchem programme) to determine ay.
Our procedure is as follows:

1. Replace water molecules with the optimized encoun-
ter complex in a water periodic box in Hyperchem,
with the minimum distance between the solvent and
solute atoms being 0.23 nm.

2. Use the number n, actually an average value, of the
substituted water molecules, to obtain the solute
molecular volume Vy, Vum=nVy,, with V,=
0.02992 nm?® being the molecular volume of H,O.

3. Use Eq. (51) to determine the equivalent cavity radius
ay of the solute:

ay = (3 /4m)"? (51)

By using the cavity radius determined by Eq. (51), we
have performed the SCRF calculations and obtained the
values of /, for a series of redox couples at the level of

UHF/DZP. For the 0,/O; and the NO/NO™" systems,
we take an average value of several nuclear configura-
tions of encounter complexes [30]. For the other systems,
we choose the nuclear configurations as shown in Fig. 2
to perform the calculation of A,. Results are listed in
Table 3.

In experimental studies, some authors measured ET
rate constants of redox systems in aqueous solution, and
used empirical models to estimate the solvent reorgani-
zation energies [31-33] (Table 3). We can see that
our results are in good agreement with those values
estimated by other authors.

Discussion on the single-sphere approximation. As men-
tioned previously, we suppose that the encounter com-
plex is placed into a single sphere cavity, and the solvent

-0.54) (-0.78) (-0.83)
o) e20 0 Q_ 1142 O o leg _©
(QM% (m«sg (0.67) S 0.1493
103042 i03518 [03718
(040) o 91207 (108) &, o508 (119 L 011
1181° o (19\0
0.5 (-0.54) (-0.60) 1es
PLANAR PLANAR PLANAR
@ ®) ©
-0.55) 1355 (0.82)
(056)  (0.30) ( o ©.09) __-N5.0.1170
01166 013 (.:{m"’ o/ﬁgg%go\o
;04219 H03876 {04475
N ‘ ; 5
<0.15) T=NLJ1162 o 01146 o 01096
(0.12) N (0.3%)  (0.66) (-024)  (0.48)
CROSSING PLANAR CROSSING
(@ (e) ®

Fig. 2. Optimized geometries (C,,) of some encounter complexes
Asz...A5 or AB,...AB;. The value within parentheses is the net
charge on atom. “Planar” means all the six atoms are in a same
plane, whereas ‘‘crossing” indicates the donor moiety and the
acceptor moiety are in 90° orientation

Table 1. Bond parameters of

species® System Bond length Bond angle System Bond length Bond angle
0, 0.1195 (0.1207) (0)y 0.1347 (0.1347)
NO 0.1165 (0.1151) NO* 0.1053 (0.1063)
O3 0.1207 (0.1278) 118.9 (116.8) (o) 0.1307 (0.134) 116.0 (113)
N; 0.1166 (0.1182) 180.0 Ny 0.1163 (0.1188) 180.0
NO, 0.1169 (0.1194) 135.8 (133.9) NO7 0.1096 (0.1104) 180.0
CO, 0.1145 (0.1162) 180.0 (180.0°) CO; 0.1228 135.1
SO, 0.1416 (0.1431) 118.4 (119.3) SO, 0.1497 (0.1520) 114.5 (116.0)
ClO, 0.1467 (0.1470) 115.9 (117.4) ClO; 0.1598 (0.1590) 113.2 (114.0)

4 Except where noted, the values within parentheses are from ref. 28, bond lengths are in nm and bond

angles are in degree
°®From [29]

Table 2. Stabilization energy E;* and dipole moment y for Az...A; and AB,...AB; encounter complexes

System Configuration® 1/debye E,/kT - mol™! System Configuration® u/debye E,/kT - mol™!
05/05 Planar 9.33 15.9 N3/N3 Crossing 9.81 11.7
NOZ /NO; Crossing 8.94 17.6 SO,/SO; Planar 9.97 28.4
CO,/CO; Planar 9.97 12.6 ClO,/CIO; Planar 10.17 29.4

2FE, = E(D) + E(A) - E(D...A)
®See Fig. 2



Table 3. SCREF results of the solvent reorganization energy®
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System 0,/0, NO"/NO  0;/05 N3/N3 NO;/NO,  CO,/CO;  S0,/SO; Cl0,/CIO;
ao/nm 0.301 0.295 0.322 0.336 0.346 0.329 0.340 0.346
pt/debye 11.04° 10.39° 10.16 10.62 9.49 11.03 11.44 11.22
2o/kJ - mol ™! 221.5 204.0 194.7 186.4 149.2 214.1 212.0 193.8

A JkJ - mol™ 214.2¢ 205.0° 200.8¢ 189.1¢ 150.6° 200.8¢ 180.8¢ 180.8¢

#HF/DZP values in this work
®For a T-shaped configuration
“For a co-linear configuration
4From [31]
°From [32]
fFrom [33]

reorganization energy actually depends only on the
single-sphere radius. On the other hand, we consider
the well-known Marcus two-sphere model, which gives
the solvent reorganization energy as follows [1-3]:

1 1 1 1 1
Jo=A(—+>———])(———
¢ <2VD + 2”A dDA) <8x 80>

where Ae is the transferred charge, and rp, ra, dpa are
the donor sphere radius, the acceptor sphere radius, and
the ET distance, respectively. We assume that the two
spheres have the same radius and are in contact with
each other, i.e., rp = ra = a and dpa = 2 a. By taking
& = 1.8 and g = 78.5 for aqueous solution, we can
simplify Eq. (52) to the following form:

38.296
Jo/kJ - mol™!

In Fig. 3, we draw the sphere cavity for both the single-
sphere case and two-sphere case. We can see that the
suitable value of ag in the single-sphere case should lie in
the range from « (Fig. 3a) to 2a (Fig. 3b). Moreover, if

0 | " ,
(@) ay=a

(b) ap=2a

(52)

a/nm = (53)

Fig. 3a,b. A schematic description of the relationship between
single-sphere cavity and the two-sphere cavity

Table 4. Two-sphere radius estimated from the SCRF results

we define a single-sphere which has a cavity volume
equal to the total volume of the two-sphere, i.c.,

Vo =dnr} /3 =2 x 4na® /3 (54)
we can obtain the equivalent single-sphere radius
re=v2a (55)

Substituting our SCRF values of 4, into Eq. (53), we can
obtain the values of two-sphere radius for different
redox couples. The values of ag, @, and r. are listed in
Table 4 and presented in Fig. 4. It can be seen that
agp, the radius of the single-sphere used in he SCRF
calculation, is indeed in the range ¢ < ag < 2a, and is
close to r.. By comparing the value of a from our SCRF
results with the two-sphere radius «’ estimated previ-
ously by other authors (Table 4), we have found that the
difference between a and & is acceptably small.

Application to intramolecular ET systems
with m-type donor and the m type acceptor

ET reactions between the zn-type donor and the n-type
acceptor have been widely used to investigate the ET
mechanisms on the basis of the two-site model. For the
existence of m orbital, allyl radical and its anion have
been used as the acceptor and the donor by several
groups [34, 35]. In order to check the suitability of
the SCRF model for the intramolecular ET system with
a not-too-long bridge, we select the model systems
(CH,),C—~(—CH>-),—C(CH,), (n =1 ~ 3), as shown in
Fig. 5, to calculate the solvent reorganization energy. In
preparing the starting geometry, we optimize the struc-
tures of 2-methylallyl radical (CH;—C(CH,),) and its

System 0;/0, NO*/NO 03/03 N3/N3y NOJ /NO, C0,/CO; S0,/SO; Cl0,/CIO;
a,/nm* 0.301 0.295 0.322 0.336 0.346 0.329 0.340 0.346
a/nm® 0.173 0.188 0.197 0.205 0.257 0.179 0.181 0.197
ro/nm 0.218 0.237 0.248 0.259 0.323 0.225 0.228 0.249

o' /nm® 0.177 0.187¢ 0.19 0.20 0.254¢ 0.19 0.21 0.21

# Single-sphere cavity radius used for the SCRF calculation

® Two-sphere cavity radius from our SCRF calculation of solvent reorganization energy

¢ From [33] except where noted

4 Recalculated from the experimentally estimated value by using Eq. (53) and A in Table 3
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Fig. 4. ay, a, 2a, and r, for different redox systems

anion at the level of UHF/DZP. Thus we can determine
the bond parameters of the n-type donor and acceptor as
shown in Fig. 6. All the C-H and the C-C bond lengths
of the intervening bridge in Fig. 5 have been set to
0.1100 nm and 0.1530 nm respectively, and in the
bridge, all the bond angles have been set tetrahedral.
The C-C bond length linking the allyl radical to the
bridge is 0.1527 nm, whereas that linking allyl anion to
the bridge is 0.1512 nm, the bond lengths being obtained
from the geometry optimizations (Fig. 6). As shown in
Fig. 5, all the bridges employ trans-staggered carbon
skeletons, with terminal donor/acceptor group in
perpendicular orientation to the bridge skeleton plane.

For the determination of the cavity radius of the
intramolecular ET systems, the following procedure
has been adopted: determining the smallest box (with
box parameters /i, /, and /5 ) enclosing the solute by

(@ (®

Hyperchem package; calculating the equivalent cavity
volume by

" = (11 +0.23nm)(/; +0.23nm)(/3 + 0.23nm)  (56)

where 0.23 nm is twice the van der Waals radius of H
atom; and using Eq. (49) to obtain the cavity radius
ag- In such a way, the only adjustable parameter a; is
essentially not arbitrary in our calculations. The values
of ag for the ionic systems in Fig. 5 have been listed in
Table 5.

SCREF calculations have been carried out at the level
of UHF/DZP. Electron localization in the ionic systems
has been achieved due to the bond parameter differences
between the donor group and the acceptor group. The
equilibrium solvation free energy (actually the electro-
static interaction energy), the dipole moment after the
SCRF calculation, and the solvent reorganization energy
according to Eq. (52) have also been listed in Table 5.

Let us consider the two-sphere model again. In
Eq. (56), we take the distance between the allylyl radical
fragment and the allylyl anion fragment to be dpa (see
Fig. 5). Obviously, in our case, rp = ra = a, and the
value of a for different systems becomes

o 76.592dp,
"~ dpa - Ao +76.592

In Eq. (57), a and d are in nm and /, in kJ - mol™".
Using the values from the SCRF calculation, we have
obtained the two-sphere radius as listed in Table 5.
From Table 5 one can find that the values of a for
different systems are slightly different. Since the shape of
D-C;-A is the most spherical among those three systems,
it is reasonable for us to choose 0.261 nm as Marcus
two-sphere radius. On the other hand, a frequently
adopted method for estimating aq is to measure the
greatest dimension of the donor and acceptor [20]. In
our case, the greatest dimension in both allylyl radical
and allylyl anion is the internuclear distance between H’
atom and H” atom (see Fig. 6). This value is about
0.430 nm from the donor/acceptor geometry optimiza-
tion. Adding the van der Waals radius of H atom
(0.115 nm) to half of the greatest dimension, we obtain
the radius value of 0.330 nm. However, if the greatest
dimension model is employed, we will overestimate the

(57)

Fig. 6a, b. Bond parameters of: a the radical; b the anion used
in the geometry preparations of the model systems in Fig. 5

Table 5. Equilibrium solvation

free energy AGS, solvent Systems ap/nm u/debye AGY Jo/kJ - mol™! a/nm dpa/nm
anizati ,and th
twosphere madins CTC T DCA 0385 8.10 ~32.86 72.29 0.261 0.349
D-CyA 0412 12,65 ~65.33 14373 0.255 0.497
D-CyA 0424 15.20 ~§7.12 191.66 0.237 0.600




donor/acceptor sphere radius due to the planar donor/
acceptor structure. Therefore, the value of 0.261 nm
from the SCRF calculation of solvent reorganization
energy in this work is a suitable estimation for radius of
the donor/acceptor sphere.

Conclusion

In this paper, we have described the expressions of the
equilibrium free energy, the equilibrium electrostatic
solvation free energy, and the non-equilibrium free
energy in detail. Based on the Onsager reaction field
model, we proposed the dipole-reaction field interaction
model for the solvent reorganization energy calculation.
After necessary derivation, we have established the
relationship between the solvent reorganization energy
and the equilibrium electrostatic solvation free energy. It
enables us to evaluate the solvent reorganization energy
through the standard calculation of equilibrium electro-
static solvation free energy. Employing Onsager reaction
field theory and the self-consistent reaction field tech-
nique, we have conveniently expressed the solvent
reorganization energy to the final form of Eq. (45).
For the self-exchange ET, an alternative form in which
the factor (\A,u\z/a?)) is included, has been given in
Eq. (49). The dipole-reaction field interaction model
permits the direct evaluation of the solvent reorganiza-
tion energy by using the molecular orbital SCF tech-
nique. Clearly, the solvent reorganization energy in our
treatment strongly depends on the radius of the spherical
solvent cavity. In our calculation, we have made an
attempt to determine the cavity radius in some more
reliable way, and the results reflect the suitability of our
procedure.

By applying the SCRF calculations to several solute-
solvent systems, values of solvent reorganization energy
have been estimated. The calculated solvent reor-
ganization energies show good agreement with the
experimental observations. It can be seen that in the
dipole-reaction field interaction model, there exists only
one adjustable parameter, say, the cavity radius. For the
solvent reorganization energy of the inorganic couples,
the errors are found in an acceptable range. However,
in the cases of (CH,),C—(~CH,-),—C(CH,), (n =1 ~ 3)
systems, the results show that the solvent reorganization
energy strongly depends on the bridge length, and sol-
vent reorganization energies for different systems lead to
slightly different two-sphere radii.

In our present work, we confine our discussions to the
self-exchange ET. In fact, this method can be extended
to the cross ET reaction. Further work is in preparation.
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All the ab initio calculations have been carried out
with the HONDQO95.6 package [13].
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